DEFINIÇÕES

Distribuição (de energia elétrica)

Transporte de energia elétrica a partir dos pontos onde se considera terminada a transmissão (ou subtransmissão), até a medição da energia inclusive.

Sistema de Distribuição

Parte de um sistema de potência destinado à distribuição de energia elétrica.

Subestação de Distribuição

Subestação abaixadora que alimenta um sistema de distribuição.

Rede de Distribuição

Conjunto de linhas elétricas, com os equipamentos e materiais diretamente associados, destinado à distribuição de energia elétrica.

Rede de Distribuição Rural - RDR

Rede de distribuição situada fora do perímetro urbano de cidades, vilas e povoados.

Ancora

Peça enterrada que transmite ao solo o esforço de tração exerci do em um ou mais estais.

Aterramento

Ligação elétrica intencional com a terra.

Condutor (de linha)

Fio, cabo ou conjunto de cabos, destinado especificamente a conduzir corrente elétrica.

Demanda

Média das potências elétricas instantâneas solicitadas por consumidor ou concessionário, durante um período especificado.

Estai

Cabo destinado assegurar ou reforçar a estabilidade de um suporte de linha aérea transferindo esforços para outra estrutura, contra-poste ou âncora.

Fator de Carga

Razão da demanda média para a demanda máxima ocorrida no mesmo intervalo de tempo especificado.

Fator de Demanda

Razão de demanda máxima num intervalo de tempo especificado para a carga instalada total.

Fator de Diversidade

Razão da soma das demandas máximas individuais de um conjunto de equipamentos ou instalações elétricas, para a demanda simultânea máxima ocorrida no mesmo intervalo de tempo especificado.

Flecha

Maior distância, em um vão de uma linha aérea, entre um condutor ou cabo pára-raios e a reta que passa por seus pontos de fixação, medida em condições especificadas.

Linha Aérea

Linha elétrica em que os condutores, geralmente nus, ficam elevados em relação ao solo ou afastados de outras superfícies, que não os respectivos suportes.

Linha de Distribuição

Linha elétrica que faz parte de um sistema de distribuição.

Linha Elétrica

Instalação elétrica que transporta energia elétrica.

Ponta de Carga

Maior carga ocorrida em um intervalo de tempo especificado.

Tensão Nominal de um Sistema (elétrico)

Valor eficaz da tensão de linha pelo qual o sistema é designado

Estrutura de Apoio

Estrutura que suporta os condutores e/ou estais componentes de uma linha aérea.

Estrutura Ancorada

Suporte na qual é feita a ancoragem de todos os condutores (e cabo pára-raios) de dois vãos contíguos de uma linha.

Vão

Distância horizontal entre dois suportes consecutivos de uma linha aérea.

Vão Médio

Média aritmética dos vãos adjacentes ã estrutura.

Vãos contínuos

Série de 2 ou mais vãos compreendidos entre estruturas de ancoragem.

Vão Ancorado

vão compreendido entre duas estruturas de ancoragem.

Vão Regulador

vão fictício, mecanicamente equivalente a uma série de vãos contínuos, compreendidos entre estruturas ancoradas, e que serve para a definição do valor do vão para tração de montagem.

Transformadores

Características dos Transformadores a serem utilizados

Serão utilizados transformadores trifásicos ou monofásicos faseneutro com as relações de tensão e potência definidas na Tabela 7.

- Chave Fusivel:

A capacidade de interrupção da chave deve ser superior ao máximo curto-circuito no ponto de instalação.

Proteção Contra Sobretensões

A proteção contra sobretensões em redes será feita através de páraraios tipo válvula, de tensão nominal 12 e 21 kV respectivamente para redes em 13,8 kV e 23,1 kV, de 5 kA de corrente de descarga nominal, equipados com dispositivo para desligamento automático em caso de defeito.

Aterramento

Os aterramentos das RDR deverão obedecer aos seguintes critérios:

O condutor neutro deverá ser aterrado aproximadamente de 300 em 300m:

Os aterramentos de pára-raios deverão ter um valor de resistência de aterramento entre 50 e 100 Ω ;

Os pára-raios, as carcaças e ferragens dos equipamentos de distribuição deverão ser aterrados através de hastes de terra conectados ao neutro da rede. O neutro deverá ser interligado à malha de terra das subestações e não deverá ser interrompido;

O aterramento normal do condutor neutro, de estai e de cerca deverá ser feito obedecendo os detalhes descritos nas normas de construção.

DIMENSIONAMENTO MECÂNICO

ESCOLHA DA CATEGORIA DA RDR

Considerando-se as curvas de vento máximo e temperatura mínima definidas no ED-2.8, para o Estado de Minas Gerais, as RDR foram classificadas nas categorias LEVE e MÉDIA, conforme definido a seguir:

CATEGORIA LEVE

Dimensionada para uma velocidade de vento igual a 80 km/h, ocorrendo a 15° C, ou temperatura mínima de 0° C, sem vento.

CATEGORIA MÉDIA

Dimensionada para uma velocidade de vento igual a $100 \, \text{km/h}$, ocorrendo a $15\,^{\circ}\text{C}$ ou temperatura mínima de $-5\,^{\circ}\text{C}$, sem vento.

No estado de Minas Gerais as áreas geográficas dos municípios e seus vizinhos de Paracatú, Montes Claros, Teófilo Otoni, Governador Valadares, Janaúba, Araçuai e Almenara, que abrangem aproximadamente

40% do Estado foram enquadradas na categoria LEVE e as demais áreas na categoria MÉDIA.

Nas áreas de transição da categoria LEVE para MEDIA, deverá ser adotada a categoria MEDIA para todo projeto.

ESTRUTURAS

Tipos de Estruturas e Critérios de utilização

As estruturas utilizadas em RDR, são classificadas nos tipos N, T, TE, HT, HTE e U.

Tipos e Comprimentos de Postes

Os postes a serem utilizados poderão ser de concreto duplo T ou madeira (eucalipto tratado).

O comprimento dos postes nos projetos de RDR é determinado pelo perfil do terreno e pelo gabarito. Os comprimentos comumente empregados são de 9m, 10m e 11m. Eventualmente, poderão ser empregados postes de 12m, 13m 15m e 17m de modo a atender uma das seguintes condições:

travessias sobre rodovias, ferrovias e hidrovias;

quando o perfil do terreno exigir poste mais elevado e economicamente for mais vantajoso que intercalar uma outra estrutura.

Nos projetos com o uso de condutores 4/0 e 336,4 MCM (CA e CAA) deverão ser usados postes de 300 daN nas estruturas tipo HT e HTE.

Gráficos de Escolha de Estruturas

Os gráficos para escolha das estruturas, foram calculados segundo os seguintes parâmetros:

• tração de projeto calculada para condição de vento máximo e temperatura mínima;

- pressão de vento atuando sobre a superfície dos condutores e estruturas;
- resistência mecânica do poste, estais e ferragens em geral;
- resistência mecânica do engastamento;
- balanço dos condutores.
- o vão máximo das estruturas sem estais laterais é normalmente limitado pela resistência do poste ou do solo.
- o vão máximo das estruturas com estais laterais é limitado pelo balanço dos condutores e pela resistência do pino de cruzeta ou de topo.

No caso de estruturas tipo U4, N4 ou T4 em alinhamento, deverão ser considerados também os estais longitudinais para vãos inferiores a 300m.

Engastamento

A profundidade de engastamento em função do comprimento do poste está definida conforme norma sendo 10% do comprimento mais 0,60 m sendo a menor medida 1,60m.

Estaiamento

Os critérios de estaiamento de estruturas estão mostrados nos nas tabelas de estrutura em anexo;

As estruturas de encabeçamento bilateral sem equipamentos ou apenas com chave fusível ou chave faca deverão sempre ser estaiadas longitudinalmente.

Curva de arrancamento para vãos contínuos correspondente a catenária do condutor para uma temperatura mínima de 0°C para ROR LEVE e -5°C para RDR MÉDIA, para um vão básico de 180m. Considera-se que haverá arrancamento da estrutura, quando a curva estiver acima do topo do poste.

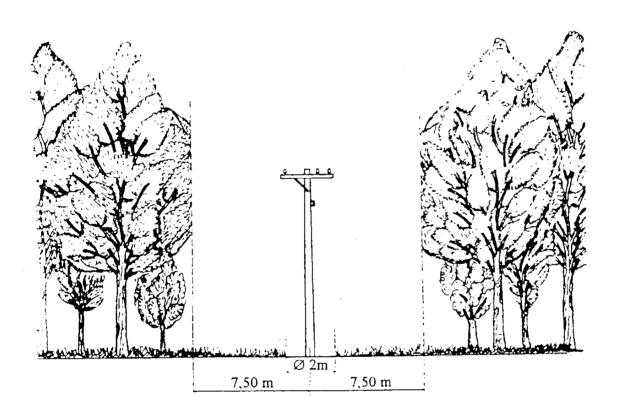
GRÁFICOS DE UTILIZAÇAO DE ESTRUTURAS

-NOTAS GERAIS

- 1. Os gráficos, apresentados nesta Norma, aplicam-se, igualmente. para postes de madeira ou concreto, devendo-se observar, entretanto as limitações relativas a aplicação dos postes duplo T e retangular quanto a assimetria na distribuição dos esforços.
- 2. Os gráficos foram gerados para RDR leves e médias e para as seguintes bitolas de condutores:

RDR Monofásicas - Condutores CAA, 4 A WG, 2 A WG, 1/0 A WG, e Aço de 3x2,25mm.

RDR Trifásicas - Condutores CAA, 4 A WG, 2 A WG, 1/0 A WG, 4/0 A WG e 336.4 MCM.


- 3. A escolha da categoria da RDR leve ou média em função das Regiões do Estado será feita através do Mapa de categoria de RDR.
- 4. Para a confecção dos gráficos observaram-se os seguintes aspectos:
- -Resistência do solo, poste, ferragens, isoladores e cabo de aço;
- -Tração de projeto dos condutores;
- -Vão máximo devido ao balanço dos condutores
- -Ação do vento sobre a superfície dos condutores e postes;
- -A velocidade de vento, para efeito de projeto, foi calculada considerando-se um período de ocorrência de 50 anos, sendo adotado desta forma:

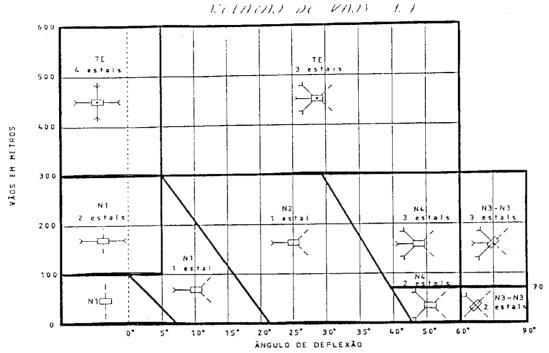
valor médio de 80 km/h para RDR leve valor médio de 100 km/h para RDR média.

5. O estai com chapa para âncora e haste-olhal têm capacidade nominal de 1.200 daN.

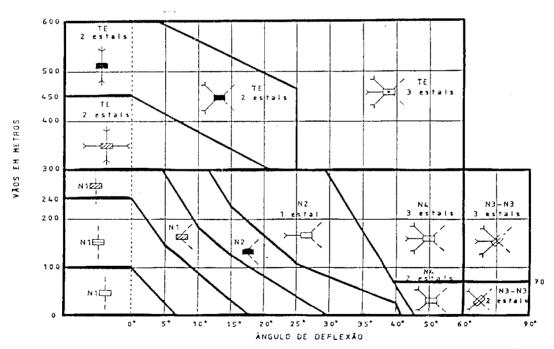
- 6. Para o cálculo dos estais adotaram-se os seguintes critérios:
- Estais Laterais: Determinados a partir do esforço resultante atuando lateralmente sobre a estrutura calculado para a condição de vento máximo;
- Estais Longitudinais: Determinados a partir do esforço resultante calculado, considerando-se as cargas de projeto máximas nos condutores (condição de O°C sem vento, ou 15°C com vento máximo).
- 7. O vão indicado no gráfico de utilização de estruturas refere-se a vão médio, ou seja, a média aritmética dos vãos adjacentes a estrutura.
- 8. Na montagem dos gráficos de escolha de estruturas com redução do número de estais laterais, foram considerados postes de resistência nominal de 300 daN, com engastamento resistindo a 300 daN e postes de 600 daN, com engastamento para 450 e 600 daN.
- 9. No caso de terrenos com baixa resistência mecânica, como arenosos e argilosos bastante úmidos, a resistência do engastamento do poste poderá ser menor que o valor aqui considerado, portanto, deverão ser utilizados os gráficos de estruturas estaiadas que oferecem uma maior segurança nestes locais.

AFASTAMENTOS MÍNIMOS FAIXA DE SEGURANÇA

TAS

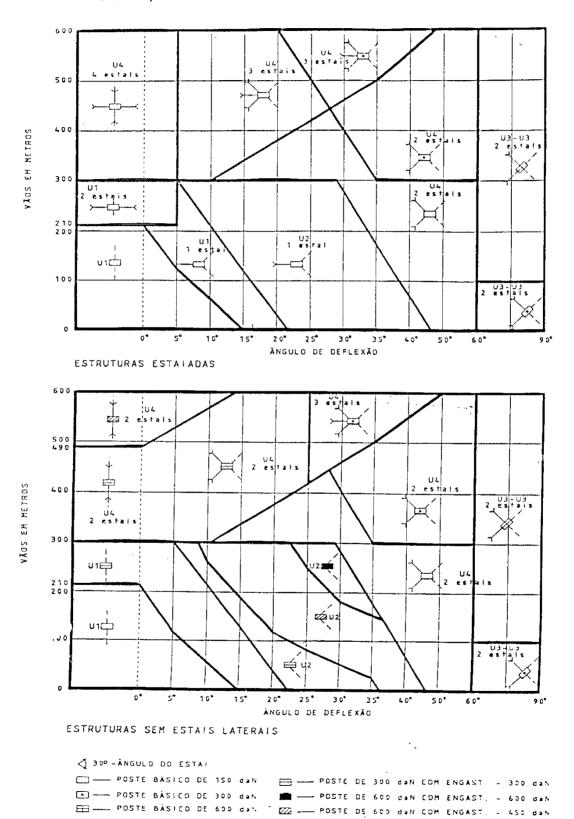

A largura da faixa de passagem deverá ser de 15m. Quando houver necessidade de se construir uma outra RDR paralela à primeira, a distância mínima entre eixos deverá ser de 7,5m.

Após a construção da RDR é permitida a utilização do terreno da faixa, para cultura de pequeno porte, deposição de materiais não inflamáveis, etc, desde que a altura destes não ultrapasse a 2m.


O aceiro em torno do pé do poste deverá ter no mínimo 2m de diâmetro para poste de madeira, e 1m para poste de concreto.

A vegetação cortada deverá ser removida do eixo para as lateriais da faixa, dentro dos 15m.

GRÁFICOS DE UTILIZAÇÃO DE ESTRUTURAS - REDES MÉDIAS TENSÃO 13,8 kV - SISTEMA TRIFÁSICO - CABO CAA #4(4) ANG



ESTRUTURAS SEM ESTAIS LATERAIS

- ₫ 300 ANGULO DO ESTAI
- POSTE BÁSICO DE 150 daN
- ── POSTE DE 300 daN COM ENGAST. 300 daN
- POSTE BÁSICO DE- 300 dan
- POSTE DE 600 dan COM ENGAST, 600 dan
- E --- POSTE BÁSICO DE 600 daN
- 1223 --- POSTE DE 600 dan COM ENGAST. 450 dan

